首页> 外文OA文献 >Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis
【2h】

Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis

机译:结合无监督基于像素的极化SAR分类和基于对象的图像分析,对石油开采基础设施进行监控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In developing countries, there is a high correlation between the dependence of oil exports and violent conflicts. Furthermore, even in countries which experienced a peaceful development of their oil industry, land use and environmental issues occur. Therefore, an independent monitoring of oil field infrastructure may support problem solving. Earth observation data enables a fast monitoring of large areas which allows comparing the real amount of land used by the oil exploitation and the companies’ contractual obligations. The target feature of this monitoring is the infrastructure of the oil exploitation, oil well pads – rectangular features of bare land covering an area of approximately 50–60 m x 100 m. This article presents an automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (PolSAR) and an object-based post-classification. The method is developed and tested using dual-polarimetric TerraSAR-X imagery acquired over the Doba basin in south Chad. The advantages of PolSAR are independence of the cloud coverage (vs. optical imagery) and the possibility of detailed land use classification (vs. single-pol SAR). The PolSAR classification uses the polarimetric Wishart probability density function based on the anisotropy/entropy/alpha decomposition. The object-based post-classification refinement, based on properties of the feature targets such as shape and area, increases the user’s accuracy of the methodology by an order of a magnitude. The final achieved user’s and producer’s accuracy is 59–71% in each case (area based accuracy assessment). Considering only the numbers of correctly/falsely detected oil well pads, the user’s and producer’s accuracies increase to even 74–89%. In an iterative training procedure the best suited polarimetric speckle filter and processing parameters of the developed feature extraction procedure are determined. The high transferability of the methodology is proved by an application to a second SAR acquisition.
机译:在发展中国家,石油出口的依赖性与暴力冲突之间存在高度相关性。而且,即使在石油工业和平发展的国家中,也会发生土地利用和环境问题。因此,对油田基础设施的独立监控可以支持问题的解决。地球观测数据可以对大面积区域进行快速监视,从而可以比较石油开采的实际土地使用量和公司的合同义务。监控的目标特征是石油开采的基础设施,油井垫–裸露的矩形区域,覆盖大约50–60 m x 100 m的区域。本文介绍了一种自动特征提取程序,该程序基于极化合成孔径雷达数据(PolSAR)的基于像素的无监督分类和基于对象的后分类的组合。该方法是使用在乍得南部多巴盆地上获取的双极化TerraSAR-X图像开发和测试的。 PolSAR的优势是云覆盖范围独立(相对于光学图像)和详细的土地用途分类的可能性(相对于Single-pol SAR)。 PolSAR分类使用基于各向异性/熵/α分解的极化Wishart概率密度函数。基于对象目标的分类后细化(基于形状和区域等特征目标的属性)将用户方法论的准确性提高了一个数量级。在每种情况下,最终获得的用户和生产者的准确性为59–71%(基于区域的准确性评估)。仅考虑正确/错误检测到的油井垫的数量,用户和生产商的精度甚至提高到74-89%。在迭代训练过程中,确定最合适的极化斑点滤波和所开发特征提取过程的处理参数。该方法的高度可移植性通过在第二次SAR采集中的应用得到证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号